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When non-abelian gauge fields are enclosed in a box with periodic boundary conditions, the 
spectrum of the hamiltonian becomes discrete and the energy values can be expanded in a power 
series of a = g2/3 ( g :  renormalized coupling constant). A method to obtain these expansions is 
explained and worked out to one-loop order. No numbers for the low-lying levels are given here, 
but some interesting properties of the mass spectrum already become visible. 

1. Introduction and summary 

In a recent letter [1], I proposed a universal expansion for the masses of the 
low-lying stable particles in asymptotically free field theories. The method is based 

on the observation that the energy spectrum of field theories in a box is discrete 

and peturbatively computable. The main difficulty then is, to work out the perturba- 
tion expansion of the low-lying levels to a sufficiently high order. This problem is 

here attacked for the case of (pure) SU(n) Yang-Mills gauge theories in 3 + 1 

dimensions. 
Gauge theories on a torus were studied by 't Hooft  [5]. He noticed that in 

addition to the usual symmetries, the hamiltonian commutes with a group of 

non-trivial transformations related to the centre Z ,  of SU(n). They will be described 

in detail in sect. 2. Here, I only remark that they give rise to a division of the 
physical Hilbert space into n 3 orthogonal subspaces, the "central sectors"*, which 

have a property characteristic for super selection sectors: application of local  

operators to the states in a given sector does not lead out of the sector. To go from 

one sector to another, one must act with global operators such as Wilson loops 

winding around the torus. 
The qualitative results of this paper can be summarized as follows. 
(a) All eigenvalues of the hamiltonian can be expanded in a power series of 

A = g2/3, where g is the renormalized coupling constant. At  least to one-loop order, 
the renormalization of the coupling constant needed to make the coefficients finite 

is the usual one. 

1 Work in part supported by Schweizerischer Nationalfonds. 
* Subspaces of states with definite electric flux in 't Hooft's terminology. 
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(b) Because the decomposit ion of the space of physical states into central sectors 
stems f rom a symmetry,  one may diagonalise the hamiltonian in each sector 
separately. It  turns out that to all orders of ;t, the energy values and multiplicities 
are exactly the same in every sector. This curious degeneracy is lifted at the 

non-perturbat ive level. 
(c) Most of the energy levels in a fixed central sector approach some value well 

above the ground state energy as g ~ 0. Only a distinguished set of zero momen tum 
states are close to the ground state for small g and are in fact degenerate  with it 
at g = 0. The explicit calculations in this paper  focus on this special group of energy 
levels. The result is that the energy differences between these states are exactly 
equal to the differences of the eigenvalues of an effective anharmonic oscillator 
hamiltonian H ' ,  which is described in more  detail below. In particular, the ground 
state in a given central sector is unique for g > 0 and the mass gap in that sector 
is equal tO the difference between the next to lowest and the lowest eigenvalue of 
n ~" 

The product  of the computational  effort made in this paper  is the effective 
hamiltonian H ' .  This is a differential operator  acting on wave functions ~b defined 
on the space of constant SU(n) gauge potentials Ck (k = 1, 2, 3). In other words, 
with respect to a basis T ~ (a = 1 . . . . .  n 2 -  1) of group generators,  we have* 

Ck = c ~ T  ~ , (1) 

and ~ is just any complex valued square integrable function of the 3(n 2 - 1 )  real 
variables c~. A remnant  of Gauss '  law requires that only those wave functions are 
physical, which are SU(n) invariant, i.e. wave functions satisfying 

~b(AcA -1) = cb(c), (2) 

for all A e SU(n). For gauge fields enclosed in an L × L x L box, the effective 
hamiltonian up to one-loop order is then given by 

A ~ v , 
H '  = - -  ~ A H ~ ,  (3a) 

L v~0 

1 0 H'o 1 a a _ _ l e s ,  a b c  b ¢ x / ~ . a d e  d e x  a - - _ _  
= ~ e k e k t ~ t I  CkCt ) t f  CkCt) ,  e k = i  OC'~' (3b) 

H i  = ~ ~ (3c) alCkCk , 

H i  = 0 ,  (3d) 

I a b c d  a b c d -  a b c d  a b c d 
H 3  = a 2 H ' o  +a35 CkCkCtCl -I-a4$ CtcCkCkClc. (3e) 

Here ,  f~bc denotes the SU(n) structure constants and s ~bcd is a totally symmetric  

* Repeated indices are always summed over. My conventions on group generators, structure constants 
etc. are collected in appendix A. 
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SU(n) invariant tensor (for the precise definition see appendix A). The coefficients 
av are the values of some one-loop momentum sums. In particular, a2 is obtained 
from a logarithmically divergent sum, the divergence being cancelled by the renor- 
malization of the coupling constant as usual. With dimensional regularisation and 
minimal subtraction [2] (MS scheme) the numbers are 

al = -4~1.89153165 . . . .  (4a) 

l l n  
a 2  ----- ~ [In ( / ~ L )  2 - 0.409052802...], (4b) 

2 3 

a 3  = 15(4~r) 2-  ~a4, (4c) 

1 
a4 = - -  ,-7--~,~0.619331710 . . . .  (4d) 

~4~')- 

The lowest order effective hamiltonian H~ is the hamiltonian one would obtain 
from the full Yang-Mills action, when the gauge potentials are restricted to depend 
on time only. Such fields are thus the "slow modes" of the system. The "fast modes" 
on the other hand are systematically integrated out and their influence on the 
dynamics of the slow modes is exactly accounted for by perturbations H'v (z, t> 1). 
To generate the perturbation expansion of the individual energy levels it remains 
to diagonalise H~. I do not know whether this can be done analytically, but H~ 
has an intriguing algebraic structure and may very well turn out to be of the 
integrable type. If not one must invoke the "big brother's" help. Some properties 
of the spectrum of H~ can however be established without explicit diagonalisation. 
For example, in sect. 5 of this paper it is shown that there is no continuous spectrum 
and that the eigenfunctions fall off rapidly for large Ck. 

Constant gauge fields can be rotated (Ck "> RktCt), reflected (ck ~ --Ck) and charge 
conjugated (Ck "> C*). The  effective hamiltonian is invariant under these operations 
with the expected restriction that only those rotations are allowed, which do not 
tilt the box. The last term in eq. (3e)in fact breaks the invariance of H '  under the 
full 0(3) down to only the cubic group. The symmetries of H ' discussed here are 
images of the corresponding symmetries of the full hamiltonian. In particular, if 
if(c) is an eigenstate of H '  with definite j P c  the corresponding eigenstate of the 
full hamiltonian in the zero "electric flux" sector has the same jr,c. 

In order to make this article readable, the more technical proofs and derivations 
are deferred to appendices: Sect. 2 introduces the reader to gauge fields on a torus, 
torons (=gauge fields with no magnetic energy) and central conjugations. In sect. 
3 it is shown that most torons are quantum mechanically unstable and that the 
perturbation expansion consequently amounts to an expansion about the classical 
vacuum configuration as one might have expected naively. The analysis of the low 
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order expressions then reveals (sects. 4, 5) that the energy spectrum has the general 
form described above and that the computation of higher order terms is a case of 
degenerate perturbation theory. In sect. 6 a useful formulation of degenerate 
perturbation theory due to Bloch [3] is reviewed and then applied to obtain the 
one-loop effective hamiltonian (sect. 7). The final sect. 8 contains a few concluding 
remarks. 

Some of the results of this paper have been anticipated in a lecture by Bjorken 
about the "femtouniverse" [4]. This is a hypothetical world about 1 fm wide 
with tiny physicists, the "femtophysicists", who are studying the strong interactions 
among quarks and gluons. In what follows, the reader is thus invited to assume a 
femtophysicist's point of view. 

2. Yang-Mills gauge fields on a torus 

Let T 3 denote the 3-dimensional torus S i x  S i x  S ~, where each factor S ~ has a 
volume (circumference) equal to L. A scalar field on T 3 can thus be identified with 
a field ~b(xl, x2, x3) on R 3, which is periodic in all coordinates Xk with period L. 
For an SU(n ) gauge field on T 3, the situation is initially more complicated, because 
periodicity is required only modulo gauge transformations. However, a detailed 
analysis shows that any such gauge field is gauge equivalent to a periodic vector 
field*. Without loss, gauge fields on T 3 can therefore be written as 

Ak(x )  = A ~ ( x ) T  a , k = 1, 2, 3 ,  (5a) 

Ak(X +L~) = A~(x),  (5b) 

where "["' denotes the unit vector in the ith direction. Two gauge fields Ak and 
A k are called gauge equivalent, if there is an SU(n) valued periodic function A (x) 
such that 

.~k(X) = A ( x ) A k ( x ) A ( x )  -1 +A(x)OkA(x) -1 • (6) 

In the A0 = 0 gauge, the hamiltonian H acts on wave functionals ~[A], where 
the variable A runs over all gauge potentials on T 3 as described above. Gauss' law 
requires that ~ is invariant under (time independent) gauge transformations, i.e. 

tPCA] = ~ [ a ] ,  (7) 

for all gauge equivalent potentials A and .,~. The color electric field E~(x),  the 
color magnetic field B~(x)  and the hamiltonian H are then given by 

1 8 
E~(x) = -  - -  (8) 

i 8A~(x ) '  

• In mathematically precise terms, a gauge field is a connection in an SU(n) principal bundle over 
T s. Every such bundle is trivial, i.e. of the form S U ( n ) x T  s. This means that gauge fields can be 
identified with Lie algebra valued vector fields on T 3, Twisted gauge fields [5] are connections in 
non-trivial SU(n) /Zn principal bundles. I do not consider this possibility here. 
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B ~ ( x )  ~ ° ~ ~b~ b c -OiAt (x)+f At(x)Ai(x)) = ~ektj(OU4/(X) , (9) 

~o L f 1 2  . . . .  E , , , x , + I _ ~ B , ~ ( x ) B ~ ( x ) !  (10) H = d 31 I~gol~kI.X) k( ) /-,go J " 

Here, go denotes the bare coupling constant and an ultra-violet regularisation is 
implicitly assumed. For the computation of the one-loop effective hamiltonian 
dimensional regularisation will be used, i.e. the theory is formulated on a d- 
dimensional torus T a and the bare coupling constant is expanded in powers of the 
renormalized coupling g2 according to 

2el 2 11n g4 } 
g02 =t t  ~g - -~e  (4--~) 2 t-O(g6) ' d = 3 - E e .  (11) 

In order to keep the magnetic energy bounded, the wave functionals ~O[A] of 
the low-lying states have to be supported essentially around the potentials Ak with 
Bk = 0 in the small coupling limit. A detailed description of the solutions of Bk  = 0 

is therefore needed. Following ref. [6], they will be called "torons". At first sight, 
one might think that torons are simply pure gauge configurations. In fact, Bk = 0 
implies 

A k ( X )  = A(X)OkA(X) -1 , 

in every simply connected patch of T 3. But T 3 is not simply connected and Wilson 
loops that wind around the world can assume non-trivial values even in Bk = 0 
everywhere. It is not difficult to find the general toron solution. A complete 
description is given by the following two statements: 
(a) For any set of angles 

o/ q~k ~R, k = 1 , 2 , 3 ,  a = l  . . . . .  n, 
(12) 

Z~o~ =0,  
ot 

define the (abelian, constant) gauge potential 

~,[~o] = ~ " . (13) 

Then, every toron solution is gauge equivalent to a gauge potential of the form 
Ak[~O], and every A k i n ]  is a toron solution. 

(b) Two fields Ak[~O] and A k ( ~ ]  are gauge equivalent if and only if 

~ = ~(~)(mod 2¢r), (14) 

for some permutation cr (and all k, ~). 
In other words, the gauge equivalence classes of torons can be labelled by the 

sets of angles ~p~, where any two sets related by eq. (14) are to be identified. This 
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makes up a compact manifold with boundary, the boundary points being character- 
ized by 

q~ = q~(~)(rood 21r), (15) 

for some non-trivial permutation o-. The fact that the toron manifold is not open 
causes considerabIe difficulties in perturbation theory (see ref. [6]). For the computa- 
tion of energy levels one is however able to overcome these dfficulties (sect. 3). 

The final topic in this section are the "central conjugations". These are the extra 
symmetries alluded to in the introduction. They are defined as follows. Let W be 
the diagonal n × n matrix with 

Wll = W22 . . . . .  Wc,-1)~,-1) = i / n ,  

W,, = i ( 1 -  n ) / n .  

W is an element of the Lie algebra of SU(n). For any triplet 

k = 1 , 2 , 3 ,  Vke{0, 1 . . . . .  n - - l } ,  (16) Z k -~. ei(2m'/n)uk,  

of elements of Z ,  define 

A~(x)=exp ( ~ v k X k W )  . 

This is an SU(n) valued function on R 3, which is quasiperiodic 

A~ (x + Ll~) = zkA~ (x) . (17) 

The central conjugate C,A of an arbitrary gauge field A on T 3 is then defined by 

C~ak(x) = az(x)Ak(x)A~(x)  -1 + A~(X)OkAz(x) -1 . (18) 

This transformation has the following properties. 
(a) Because the phases Zk corrimute with matrices, C~A is periodic and hence a 

gauge field on T 3. 
(b) Locally, Cz is just a gauge transformation, but globally it is not: Wilson loops 

that wind around T 3 in general change their phase by a multiple of 2~']n. 
(c) Cz maps gauge equivalent fields onto gauge equivalent fields and can therefore 

be considered a mapping of gauge equivalence classes. 
In quantum theory, central conjugations are unitarily represented by operators 

Uz: 

(Uz~O)[A] = ~O[C;IA]. (19) 

On the space of gauge invariant wave functionals ~O, we have 

U z  • U w  -~- U z . w ,  z • w = (ZlWl, g2w2, z3w3) , (20) 

i.e. the central conjugations make up a group isomorphic to Z ,  x Z ,  x Zn. Further- 
more, because of property (b) above, the hamiltonian H commutes with the 
operators U~. Central conjugations are therefore genuine symmetries of the system. 
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The division of the physical Hilbert space into central sectors now comes about 
as follows. Because of the multiplication law (20), the operators Uz commute and 
can be simultaneously diagonalised. Furthermore, the group structure requires that 
the eigenvalues are characters of Z,  x Z,  x Z, :  

Uz¢/= (Zl)el(Z2)e~(Z3)e3¢/, ek E {0, 1 . . . . .  n -- 1}. (21) 

There are thus n 3 different choices for the quantum numbers ek ("electric fluxes" 
according to 't Hooft [5]) and the central sectors are just the corresponding 
eigenspaces. Their superselection character (cf. sect. 1) is a consequence of property 
(b) above, which implies that U~ commutes with all local gauge invariant operators 
(and arbitrary linear combinations of these). 

3. Quantum mechanical instability of torons 

Let us start with some heuristic considerations. The hamiltonian H (eq. (10)) 
has the Schr6dinger form with the color electric part playing the r61e of the kinetic 
energy and the color magnetic part being the potential energy. The torons minimize 
the potential energy. In directions orthogonal to the toron manifold, the potential 
energy increases, i.e. the torons are at the bottom of a potential valley, the "toron 
valley". As go-, 0, the wave functionals 4J[A] with small energy are squeezed into 
the toron valley. Now the following observations are crucial. 

(a) The kinetic energy for motions along the toron manifold is of order g2. For 
go ~ 0, there is therefore no energetic motivation for the wave functionals ~[A] to 
spread along the toron valley. 

(b) As will be worked out below, the toron valley is not everywhere equally 
wide. By moving to places where the valley is widest, the wave functionals ~b[A] 
can gain energy of order (g0) °. 

Taken together, (a) and (b) imply that the wave functionals of the low-lying 
states are not spread along the whole toron valley, but rather are supported on 
perturbative neighborhoods of those few torons, around which the toron valley is 
widest. What will be shown in this section is that these special torons (i.e. the 
"quantum mechanically stable" ones) are exactly the classical vacuum A k  = 0 and 
its central conjugates. 

We now proceed to make the above argumentation mathematically precise. First, 
the gauge fields As in the neighborhood of the toron manifold are parametrized 
as follows: 

A k  (X ) = A (x ){Ak[~o ] + goqk (X )}A (x )-* + A (X )OkA (X ) -~ • (22) 

Here, qk denotes a fluctuation field orthogonal to the toron manifold and the gauge 
orbit of A~[~], i.e. 

~d3x (qk(X))al3 = O, Ot =/3, (23a) for 
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Okqk  = O, Ok = Ok + A d  A k  [ tp ] ,  (23b) 

( A d A k  is defined in appendix A). Because the wave functionals considered are 
gauge invariant, we have 

~[A] -- ~[~o, q] ,  (24a) 

H~[A]  =/~[~o,  q] ,  (24b) 

for some "reduced" wave functional ~ and hamiltonian/~r. To lowest order in go 
one finds 

I0 L 3 1 a a 1 a a I£I = d x {~pk(x)pk(x)+~qk(X)(n[~o]q)k(X)}, (25) 

where Pk is the momentum canonically conjugate to qk and 

(O[~]q)k = -D~D~lk +DrDkqt. (26) 

A remarkable fact about eq. (25) is that there is no kinetic part for the variables 
tp~ (cf. observation (a) above)./-I  can therefore be diagonalised at any fixed set 
of angles ~o ~. In particular, the lowest energy value at ~0 is 

~o[~O] = ½ Tr (a[~o ]) 1/2 . (27) 

The ground state of/-it is thus obtained by minimizing ~o[~o] (cf. observation (b) 
above). In this way, the quantum mechanically stable torons are singled out. Note 
that to any order in perturbation theory, the ground state and the other low-lying 
states are confined to a small neighborhood of the stable torons, because the kinetic 
energy part for the variables ~o~ is of order g2 and cannot compete with the rise 
of ~fo[~O] away from its minima. 

It remains to compute ~o[¢ ]. This is possible, because the covariant derivatives 
Dk commute with each other and with/2[~p]. It is then not difficult to determine 
the eigenvalues of /2[~] and to compute the frequency sum (27) (appendix C). 
The outcome is 

1 1 
~o[~] = ~ o [ 0 ] + - r =  Y, ~ , - - ~  (1 - cos  v .  (,p~ - ~ ) ) .  (28) 

Here, u runs over all vectors (Vl, v2, va) of integers and ~ = (~o~, ~o~, tp~'). It follows 
immediately that ~o[~O ] assumes the minimal value go[0] if and only if 

~p~ = ~pak (mod 21r), for all k = 1 , 2 , 3 ; a , / ~  = 1 . . . . .  n .  (29) 

Because ~ ~o~ = 0, this condition amounts to 

~o~ = 27r vk(mOd 2~r), Vk ~ {0, 1 . . . .  , n -- 1}, (30) 
/,/ 

i.e. the stable torons are characterised by a triplet of integers vk (rood n). Their 
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total number  is n 3, which is exactly equal to the number  of central conjugates of 

the classical vacuum A k  = 0. From this observation (or by inspection) one arrives 
at the conclusion that all torons are quantum mechanically unstable except the 
classical vacuum and its central conjugates*. 

4. Leading order perturbation theory 

The result of sect. 3 implies that to generate the perturbat ive expansion of the 
eigenfunctionals and eigenvalues of /4 ,  one must expand about  the classical vacuum 

Ak----0 or any of its central conjugates. Each expansion yields eigenfunctionals, 
which are supported essentially on a small neighborhood of the field one is expanding 
about. Eigenfunctionals belonging to different expansion points are mapped  onto 
each other by the central conjugations Uz (eq. (19)). Thus, if 0 is an eigenfunctional 
of H,  which is obtained by perturbing around Ak = 0,  the conjugate states Uz~ are 
degenerate  with 0 and can be linearly combined in such a way as to get eigenfunc- 
tionals lying in definite central sectors. It  follows that to all orders of perturbat ion 
theory, the spectrum of H is the same in every central sector. Exchange effects via 
the toron valleys lift this degeneracy at the non-per turbat ive level and the per turba-  
tive ground state, which is invariant under  central conjugations, is p romoted  to the 
unique true ground state. To  compute  the spectrum of H in any given central 
sector perturbatively,  it is however  sufficient to work out the expansion about 

A k  = 0"*. 

Before the expansion about  the classical vacuum can be effected, the gauge 
degrees of f reedom must be eliminated. The gauge fixing procedure  in the hamil- 
tonian formulation has been worked out in great detail by Christ and Lee [7] 
(earlier references are given in that paper). I shall therefore be rather  sketchy on 

this point. To be prepared for dimensional regularization, the base space is taken 
to be a d-dimensional torus T d f rom now on. Thus, let A1T denote the space of 
gauge fields Ak (X) o n  T d, which are transverse: 

OkAk -- 0 ,  (31) 

(we are heading for the Coulomb gauge). For a gauge invariant wave functional 
O[A] it is sufficient to know its values along A T, because gauge fields off A T can 
be made  transverse by a gauge transformation.  The reduced wave functional 

= ~IAT, (32) 

* As a check, I computed ffo[~'] in lattice gauge theories. In the continuum limit (lattice spacing a -~ 0) 
the result (28) was reproduced. For any finite a, ffo[~] differs from the continuum expression, but 
the torons that minimize ~o[~0] are the same. 

** The reader may have noticed the analogy to the double well anharmonic oscillator, where one can 
expand about either of the two minima of the potential. Because of the potential hump between 
the expansion points, the wave functions in the two wells do not communicate on a perturbative 
level. In the gauge theory, on the other hand, a perturbative exchange does not take place, because 
the connecting toron valley is too narrow. 
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therefore contains all information on t#. Since H~b is also gauge invariant, there 
must exist a linear opera tor /~  acting on reduced wave functionals such that 

/-]r~ =/-~0. (33) 

is the Hamilton operator in the Coulomb gauge. By construction, the eigenvalues 
o f / - t  are those of the full hamiltonian H (in the sector of gauge invariant states) 
and the corresponding eigenfunctionals are related by eq. (32). Note that the 
Coulomb gauge condition (31) tolerates constant gauge rotations and that physical 
reduced wave functionals must therefore be invariant under these transformations. 

Let ¢r~ be the transverse part of the color electric field (eq. (8)): 

~r~(x)=E~(x)-(oklo~F.~.)(x), A =OiO , . (34) 

~r~ makes sense as an operator acting on reduced wave functionals. The reduced 
hamiltonian is then given by [7]* 

/ i  L 
= 1 2  Jo - 1 / 2  a 1 / 2  . , ~ a b  1 / 2  b ,  \ - 1 / 2  Ego dax ddyp "n'k(x)p K(x, y)kjp ~rj~y)o 

+=---f ddxB~(x)B~(x). (35) 
2go 

Here, 0 is a kind of Faddeev-Popov determinant, 

0 = det' (--0kDk), Dk = 0k + Ad Ak,  (36) 

and K incorporates the non-abelian Coulomb Green function: 

ab ( __}__1 A 1 j)ab 
K(x,y)ki=6abSkl~(x--y)+ AdAkoIDt 0---~-~AdA (x ,y) ,  (37) 

(in eqs. (36) and (37) the trivial constant zero modes of OkDk are to be omitted). 
We are now well prepared to expand about Ak ---- 0. To this end we substitute 

A~(x)= 2/3---d/3 a go L Ck +goq'~(X), (38a) 

.L / 
a / d a c k : independent of x,  d x q k (X) = 0 ,  (38b) d o 

* The scalar product of two gauge invariant wave functionals O[A] and ~[A] is 

= I ~tAl*tArxtA~ = IA: ~EA~pEA1gEAr;tAI, (~,, x) 

as defined by eq. (33) is hermitian relative to this scalar product. For perturbation theory, the 
field dependent  measure factor pEA] is disturbing. However,  a similarity transformation 

removes the obstacle. Eq. (35) displays the transformed/-~r. 
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and expand for g0-* 0. The reason for the separation and unusual scaling of the 
constant modes c~ will become clear below. The canonical momenta ~r~ are 
decomposed and scaled similarly: 

ir~, (x ) = go2/3L-2d/3 e ~, + gol p~, (x ) , (39a) 

e~ i Oct'  ddxp~(x)=O" (39b) 

When eqs. (38) and (39) are inserted into eq. (35), the following expansion results: 

/~ = Ho + g~/3H1, (40a) 

/"[1 --- ~ g0-~'/3r-r(v)-'~l, (40b) 
v ~ O  

O L 

= ½ Jo ddx {P~'P~" +O~/?O~ff). (41) Ho 

The lowest order hamiltonian Ho is harmonic and can be diagonalised by the 
Fourier transformation: 

q~(x) = b k~o{e~k'Xb~.(k)+e-~k'Xb~.(k)+}, (42a) 

p~(x) = b k~o(--i)lkl{eik'XbT(k)--e-'k'~b~.(k)+}, (42b) 

k = (kl . . . .  , ka), kl = L V t ,  (vt ~ Z). (42e) 

Note that b and b ÷ are not defined for k -- 0. The most important properties of 
these operators are 

kjb (k) ° + = kjbj (k) = 0, (43a) 

[b ~ (k), bb (/)] = [b a (k) +, b~(/) ÷] = 0,  (43b) 

L d ( kikj.~ 
b + ab (43C) [b , (k ) ,b j ( t )  8k, 

1 
Ho=Z"~ Z 2k2b~(k)+b~'(k), (+constant). (43d) 

k # 0  

It follows that b and b ÷ are energy annihilation and creation operators: 

[/40, b~(k)] = -Iklb?(k), (44a) 

[Ho, b~(k) +] = Iklb~.(k) + . (44b) 

Starting from the ground state ]0) characterised by 

b~(k)[0) = 0, (45) 
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the Fock space ~q can now be built Up as usual, thus completing the diagonalisation 
of Ho. Note that the spectrum of H0 is purely discrete with a gap equal to 2zr/L 
between the ground state and the first excited state. 

Actually, the Fock space construction given above is not the whole story, because 
the constant field degrees of freedom have not been taken into account. Neither 

a a 
c k nor e k appear in the lowest order hamiltonian H0. This means that at go = 0, 
the eigenfunctionals of / - I  can be written in a factorised form, 

~[A]  = q~ (c)x[q] ,  (46) 

where X is an element of the Fock space ~q and ~ is an arbitrary square integrable 
function of the constant modes c~. Thus, every eigenstate of Ho in ~q gives rise 
to an infinity of degenerate eigenstates in the full Hilbert space ~ .  For example, 
the ground states of H0 in ~ are given by eq. (46), where X is the wave functional 
of the Fock space vacuum 10): 

X [q] oc exp - ½ Io L ddx q~ ( x ) ( -A )  1/2q~ (X). (47) 

The infinite degeneracy of the ground state (and of the other states) at go = 0 is 
lifted at first order perturbation theory. As a result, the spectrum o f / - I  assumes 
the general form described in sect. 1. In particular, the effective hamiltonian H '  
gives the level splittings of all those states, which become ground states at go = 0. 

5. First-order perturbation theory 

The first order correction to the leading order hamiltonian Ho is easily found to 
be 

L 

~tT CkCt) tC k  - -~  [2ekek d x f  qt(X)Okql(x) (48) 

It depends on the constant modes c ~, and is therefore capable to lift the degeneracies 
present at go = 0. According to the rules of first order degenerate perturbation 
theory, H~ °~ must be diagonalised in the subspaces of degenerate states. The first 
order energy shifts are then equal to the eigenvalues. In particular, the lowest lying 
energy values are obtained by applying this procedure to the space of ground states 
as described by eqs. (46) and (47). The relevant matrix elements for this case are 

= L  - d / 3  1 , 1  a o 1 obo c 2 dc~l (c )  {~ekek+Z(f CkCt) }~02(C), (49) 

(the third term in eq. (48) does not contribute, because X is even under x ~ - x ,  
the norm of X is taken equal to 1). It follows that the computation of the first order 
energy splittings of the lowest lying states exactly amounts to a diagonalisation of 
the lowest order effective hamiltonian H~ (cf. sect. 1). Note that the invariance 
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property (2) required for physical wave functions is a consequence of the corres- 
ponding property of reduced wave functionals (cf. discussion after eq. (33)). 

I do not know whether the eigenfunctions and eigenvalues of H~ can be computed 
analytically. A number of rigorous statements about the spectrum of H~) can 
however be made. Most important is the 
Theorem: H'o has purely discrete spectrum, i.e. there is a complete set of normaliz- 
able eigenfunctions with every eigenvalue having a finite multiplicity. 

At first sight one may not be surprised that the anharmonic oscillator potential 

1 abccbcC 2 V(c)=~(/ k t )  , (50)  

"confines" the wave functions with finite energy. However, although V~>0 
everywhere, V ( c ) =  0 for all abelian constant fields ck no matter how large. Wave 
functions could therefore escape along these directions. As is born out in the proof 
of the theorem given in appendix D, the reason that they do not is that the potential 
valleys along the abelian ck's become increasingly narrow as Ck-'> 00. There is a 
close connection here to the discussion in sect. 3. Namely, any abelian Ck can be 
diagonalised by a constant gauge rotation after which it assumes the toron form 
(13). The 43otential valleys discussed here are therefore the constant field views 
of the toron valleys and the theorem above merely corroborates the conclusion of 
sect. 3 that the expansion point A k  = 0 is stable. 

A few properties of the eigenfunction of H~) can be established rigorously. 
(a) Because of elliptic regularity, all eigenfunctions of H~ are real analytic. 
(b) The ground state wave function is not degenerate and can be chosen positive. 

This follows from a Perron-Frobenius type argument as explained in ref. [8], oh. 
8.12, for example. Consequently, the ground state must be invariant under color 
and space rotations, space reflections and charge conjugations. 

(c) From a result of Agmon [9], one deduces that the eigenfunctions of H~ decay 
at least as fast as exp ( - a  Ic ] 3/2) for Ck ''> 00, where a > 0 is some number independent 
of the state. 

The main conclusion to be drawn from this section is that perturbation theory 
around the classical v a c u u m  Ak = 0 is stabilized at first order. It can now be carried 
on to any desired order following the well known rules of ordinary degenerate 
perturbation theory. 

6. Degenerate perturbation theory to all orders 

This section reviews an economic formulation of degenerate perturbation theory 
due to Bloch [3]. For detailed derivations and simple examples the reader is referred 
to the excellent article by Bloch. 

Let/-~r =Ho+AoHt be the hamiltonian in the Coulomb gauge (eqs. (40)), but 
consider A0 as an independent coupling constant. Bloch's method yields an 
expansion in powers of Ao. In the final expressions one may then set Ao = g2o/3 and 
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replace/-/1 by the power series (40b). Suppose now that Eo is an eigenvalue of Ho 
and let ~o be the corresponding eigenspace. The projection operator onto ~o is 
denoted by Po. For small Ao, one expects that there are eigenstates la) 
(or = 1, 2, 3 . . . .  ) of H such that 

nl~> = (E0 +tL)l~>, tL  = O(ao). (51) 

The linear space spanned by all these states is denoted by X a and the corresponding 
projector by P. In particular, at ho = 0 we have ~ = ~o  and P = Po. 

To first order ho, the energy values E~ are equal to the eigenvalues of the operator 
hoPoH~Po acting in ~o. Bloch now constructs an operator R acting in ~o, which 
generalizes h oPoH~Po in the sense that the eigenvalues of R are equal to the energy 
values E,, to all orders of Xo. Explicitly, Bloch's formula is 

v = l  k ,=O kv=O 

× x (k l  . . . . .  kv)PoH1SklH1Sk2H1 • • • SkvH1Po, (52) 

sO=_po, Sk= 1-Po 
(Eo-Ho)  k ' (k t> 1), (53) 

v~ 

x(k~ . . . . .  k ~ ) = l ,  if ~ kt>~t~ 
/=1 

for all tz = 1 . . . . .  v, 

= 0 otherwise. (54) 

In this paper we shall only need the terms up to order A 04. Setting 

we have 
Qo = 1 - P o ,  a = E o - H o ,  (55) 

R = ~ A~R~, (56a) 

R 1 = PoH1Po, (56b) 

R 2 = Poll1 Q°H1Po,  (56c) 
a 

R3=  PoH1Q° H 1 Q °  H1Po-PoH1 -Q-~-H1PoH1Po , a a a (56d) 

R4= eonl O° n l  O° O° H eo- eonl O° H eonlPo 
a a a a a 

- P o n l  - ~  H 1 Q °  H1P°H1P°-  Q--~°2 Q°H1P°a 

+ Poll1 Q-~H1PoH1PoH1Po. (56e) 
a 
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Although R does not completely solve the problem to compute the energy values 
E~, a considerable simplification is achieved, because ~'o usually is a "small" space. 
In any case, unless dim ~0 = 1, one will have to diagonalise R by applying perturba- 
tion theory again. Before this, one must however take into account that R is in 
general not hermitian. Rather, 

dcf 
B R  + = R B  , B = PoPPo,  (57) 

so that a hermitian effective hamiltonian H '  can be defined by 

H '  = B - 1 / 2 R B  1/2, (58) 

H '  also acts in ~'0 and has the same eigenvalues as R. Noting 

_ _ _ ~ Ao ~ " "  ~ k, =--  v 8~.k~+k2+...+k~÷~S H i S  H i "  "H1S  k ~ ,  (59) P 
v~O k l~O kv+l=O 

one finds 

H '  = ½(R + R +) + O(A 5o). (60) 

To sum up, the procedure to compute the energy values E~ to order A 04 is to first 
work out the effective hamiltonian H '  according to eqs. (56) and (60) and then to 
apply perturbation theory to H ' .  In this paper, only the first of these two steps is 
completed. 

7. One-loop effective hamiltonian 

We now apply the method explained in sect. 6 to the ground states of Ho. In 
this case Eo = 0 and ~t'o is the space of wave functions (46) with X set equal to the 
Fock space vacuum (47). The elements of ~o are characterised by square integrable 
wave functions ~o (c) and H '  is therefore an operator acting on them. This is made 
explicit by noting that to any order of g~/3, the perturbation H1 is a polynomial of 
c, e, q and p. Because c and e commute with q, p, Ho and Po, the expressions (56) 
for the effective hamiltonian factorise term by term into a Fock space vacuum 
expectation value and a polynomial of c and e. For example, the leading order 
contribution to R2 is (cf. eqs. (48), (56c)) 

R2 = PoI-t  O° 
a 

:(01 fo L daxffCaq~Okqdi (1--10)(01) I o ' - H o  dayfbe:qTOtq~JO) 

× L-2a/3c ~,c ~Po. (61) 

The action of R2 on a wave functional ~o(c) • )~[q] therefore amounts to multiplying 
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TABLE 1 

List of terms that occur in the expansion of the interaction hamiltonian H1 in powers of g~/a (eq. (40)) 

gOo/a g10/3 g20/3 g~/3 g~/3 g~/3 g6o/3 

e:  c2p 2 cap 2 e2q 2 
4 2 2 c4p2 c c q  

cq 2 

q 3 cp 2q ecpq epq 2 ec 2pq 
cq3 pZq2 c2p2q cp2q2 

4 q 

Each term is represented symbolically by its operator content disregarding the ordering of the 
operators. The terms in the lower half of the table do not contribute to the effective hamiltonian H'. 

q~ with all factors in eq. (61) on the left of P0. In other words, the contribution to 
H '  (when viewed as an operator  acting on ¢) is obtained by deleting P0 on the 
right-hand side of eq. (61). This rule is valid to all orders and will be applied 
henceforth without mention. 

The aim of this section is to compute H '  up to order g0 s/3. To this end, one 
expands H1 up to order g6/a, inserts the expansion into eqs. (56) and works out 
the resulting Fock space vacuum expectation values by Wick's theorem. In the 
course of this procedure, many terms are generated, which, for symmetry reasons, 
do not contribute ultimately. It is therefore worthwhile to first survey the terms 
that can appear. Table 1 lists the possible operator  combinations that occur in the 
expansion of H1 up to order g~/3. Not all of these contribute to H ' ,  because of the 
following selection rules: 

(a) /~r and 10) are invariant under space reflections. Any term occurring in H '  
must therefore be even under c ~ - c ,  e -~ - e .  

(b) All Fock space vacuum expectation values containing an odd total number 
of p's and q's vanish. 

(c) H '  must be real and hermitian. The operator  combination ec does therefore 
not occur. 

By inspection, one now easily shows that the terms in the lower half of table 1 
contribute at most an additive constant to H '  and can therefore be neglected. In 
other words, to compute H '  to order gS/3, it is sufficient to keep only those terms 
in the expansion of H1 with an operator  content as listed in the upper half of table 
1. This mutilated H1 is thus given by 

H1 = hi + hE + h 3 ,  (62a) 

T--d/3rl a a- - l J , , . abe  b c,.2"~ 
h l = L  t gekek~-Z t l  C ~ )  I ,  (62b) 

L o 
h2 -- go6/3r-4a/311-, 2 | dax e ~ (Ad qk A-1  Ad qlet) ~ (x)  , (62c) 

Jo 



M. Liischer / Mass spectrum of Y M  gauge theories on a torus 

L 

H o  + g2/Sh3 = ½ Io dax {pkAktPt  + qkBklql} ,  

-- 8 + -4/3L-2d/3  1 " 1 
A k l  -- kl SO Ad Ck - ~ d  Ad ct, 

249 

(62d) 

(63a) 

Bkt = -SktD'~Di +g4/3L-2a/a(Ad Ck Ad c1-2[Ad Ck, Ad ct]). (63b) 

In these expressions, the covariant derivative D k  is defined by 

D k  = t~k "4- g2o/3L-a/3 Ad Ck . (53c) 

A remarkable feature of eqs. (62) is that h2 and ha are quadratic forms of the 
"fast" modes Pk and qk. This structure is typical for one-loop background field 
calculations. 

We now insert eq. (62a) into eqs. (56) and split the computation of H '  = ½(R +R +) 
into four steps. 

(ii) Terms containing h i only. There is actually only one term of this kind, because 

-Q-~h 1P0 = 0. (64) a 

The contribution to H '  is therefore 

2/3 1 , 
T1 = (goL) ~ H 0 .  (65) 

(ii) Terms containing h2. Since h2 is of order g6/a, there is only one contribution 
here too: 

Noting 

Tz= g2o/3 (Olh210> . 

1 8 klk!~ 
(OIq~(x)q~(y)lO)=Sab--~a k~O2-~l( t , e ~k''x-') -T:] 

one computes 

T2=(g°L~)S/3n 4d \ L  k~,O ]kl-3 1 -~ e l e l  . (66) 

(iii) Terms containing h3 only. There are many terms of this kind. However, the 
calculations can be simplified by noting that the sum of these terms is equal to the 
ground state energy of the harmonic oscillator (62d), when ck is considered a fixed 
background field. Still, a considerable amount of algebra remains (appendix E). 
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The outcome is 

,,4/3 ( d -  1)2/1 1 
V3= (goL ) ) a l l  -~ClCl 

)1 
+(g°L~)S/3n 96d \L  3 kE~o Ikl-3 (f:%Pc;)2 

d - ~ l 1 d)a,,,~,m Lk 14- 5dk~ksk~k,,,]) + (goL~) s/3 1-'-~- [,~--~ k~,O Ik I-7[(6- 

1 abcd a b c d x-£s ClCsCiCr,. (67) 

(iv) Terms containing hi and h3. Because of eq. (64) such a combination can 
only occur in R3 and R4. It turns out that the rules (a) and (c) above exclude a 
contribution from R3 and one is left with 

7"4--~s/3![/0 t ' s o  2/,  i t i3 -~[h l , [h l ,  h3]]10)+(0i[hl,[hx, h3]]-~ha,0)} 

Noting 
L 

h3=L-al3c~ Io d% f"%f:(x)a~(x)+ 213 O(g0 ),  

one obtains (after some algebra) 

d - l ( 1  ikl_3) l ,be b ~2 T4=-(goL~)S/3n-i-~\-~k~o -~(f c~ci) . (68) 

Finally, the contributions T~, i = 1 . . . . .  4, are added up and the following result 
is obtained: 

k@O / . I  "~ - ' £e l e l  

+ (g°Le)2/3 [ 1 + (g°L~)2n -d2+24dd+ 24 ( ~ k ~ O  Ikl-3)] l(fabccblc~)2 

( d - 1 ) ~ ( 1  ~ ikl_,) 1 o .  + (goL~)4i3n ~ k - ~  kL ° ~c,c, 

d - l /  1 ikl_7[(6_d)8,,.&.lkl,~_ 5dk,ksk,k,,,]) + 

1 abcd a b c d x-~s CtCsCiC,.,. (69) 
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eae a / , . a b e  b cx2 As is seen f rom this formula, the coefficients of t t and t f  c~c~) are not the 
same. This asymmetry  can be removed by rescaling Ck, i.e. by making the substi- 
tution* 

c~ -, Z1/~ c~ a ~ . - 1 / 2  , e k  ~/-~ ek ,  (70a) 

d 2 + t l d - 3 6 /  1 [k[_3) Z= l _ + ' "  (70b) 

After  that H '  assumes the simple form 

H '  = (g°Z~)E/3{Hto +(go/-- ~'2/31 al~k~k~-~ 
L 

a b c d  a b c d -  a b c d  a b ¢ d ' l~  
+(goL~)6/a[ot2H~ +a3s C k C k C l C  l "l-Ol4S CkCkCkCkJ~, (71) 

( d - l )  2 1 ~ [kl_ 1 (72a) 
a l  = n 4-----d-- L k,,O ' 

2 5 - d  1 
0g 2 ~--- n 7---~ L 3 ~ lkl-3 ' (72b) 

k ~ 0  

d - 1  1 
a3 = 16---d- L 3 ~" Ik[-7[(6-d)[k[4-  15dk 2k 2]' (72c) 

k ~ 0  

5 ( d -  1) 1 
a 4 =  16 L 3 y [kJ-7(k4-ak21k2)" (72d) 

k # 0  

To go f rom here to the effective hamiltonian as quoted in sect. 1, it remains to 
evaluate the one- loop m o m e n t u m  sums in the coefficients al. Following the rules 
of dimensional regularisation**, the sums are first rewritten with the help of the 
heat kernel on $1: 

f ( t )  = exp {-t(2rr•)2}, (73) 

L---; k~,o ~ Ik[- '= ~ d t t ~ - l ( f a -  1) . (74) 

The coefficients ai then become 

( d -  1) 5 f ~ 
ax = n ~  jo d t t - 1 / 2 ( f a - 1 )  ' (75a) 

25-d f ~ t l /2 ( f  a _  a E = n ~ j 0  dt 1), (75b) 

* Only the spectrum of H'  is observable; this is not affected by a change of variables. 
** For more details about dimensional regularisation with compact dimensions see e.g. ref. [10]. 
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d - 1  fo~ 
c~3 = 30-'6-~ ,I ° d t t S / 2 [ ( 6 - d ) f a - l f " - ( d 2 - 7 d + 2 1 ) f a - 2 ( l c ' ) 2 ] ,  (75c) 

d - l I :  
o~4 =, ~ df ts/2[fa-lf "- 3fa-2(f')2]. (75d) 

Some properties of the heat kernel on S I are listed in appendix B (in the notation 

used there [(t) = F,(O; I)). It follows from these that the coefficients o~i are meromor- 
phic functions of d, the representations (75) being valid for low Re d. Only o~2 has 

a pole at d = 3: 

l l n  1 
a 2 =  9(4~r) 2 e I-O(1). (76) 

This pole is exactly cancelled by the coupling constant renormalization (11). In 
other words, H '  as given by eq. (71) is finite at d = 3, provided only the coupling 
constant is renormalized in the usual way. It is not difficult to compute the finite 
part of t~2 and the values of the other ~t's at d = 3 (see appendix F for a sample 
calculation). With this last step completed, the effective hamiltonian as presented 
in sect. 1 is obtained. 

We conclude this section by remarking that the effective hamiltonian for the 
2 + 1 dimensional theory can be quickly obtained from the above formulae simply 
by evaluating the a ' s  at d = 2 (there are no poles there and the coupling constant 
need not be renormalized). At d = 1 the expected null result is obtained. 

8. Concluding remarks 

The calculations in this paper rely on the Schr~dinger representation, i.e. on the 
use of wave functionals and of the Hamilton operator.  The Schr/Sdinger representa- 
tion of the t~ 4 theory was recently investigated by Symanzik [1 I]. He found that, 
as expected, all amplitudes were well defined in the dimensionally regularised 
theory and that, furthermore,  the wave functionals could be renormalized so as to 
make them finite and non-trivial in the cutoff free theory. To the extent that no 
unexpected ultraviolet divergencies were encountered,  the results obtained here 
show that the same is true in the gauge theory case, too. It is possible to compute 
the effective hamiltonian /-/" by a purely euclidean method. Namely, one first 
calculates the euclidean transition amplitude to go from a constant gauge field to 
another in perturbation theory and expands for large times T. H '  can then be read 
off essentially from the term proportional to T. Using the Lorentz gauge, I computed 
the one-loop coefficients o~i along these lines and reproduced eqs. (75). One may 
therefore be confident that the hamiltonian method not only yields finite but also 
correct results. From the calculational point of view, the euclidean and the hamil- 
tonian technique are about equally voluminous. However,  most of the steps 
necessary to compute the effective hamiltonian are programmable (the expansion 
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of H and Bloch's formulae, for example) so that one may very well be able to go 
beyond the one-loop level. 

A striking result of the present investigation is the exact degeneracy of the central 
sectors to all orders of perturbation theory. This is a truly non-linear effect, which 
does not take place in the abelian gauge theory, where the sectors are split by 

energy gaps proportional to g2/L .  From lattice gauge theories (or the "electric 
flux" interpretation [5]) one expects, on the other hand, that the gaps in the 
non-abelian case increase with L. While such a behaviour would be difficult to 
obtain in perturbation theory, a non-perturbative contribution always is accom- 
panied by a power L p, where p can be any number  greater than - 1 .  For this reason, 
the perturbative degeneracy of the central sectors is welcome and one may even 
hope to estimate the string tension by computing the non-perturbative splitting of 
the sectors semi-classically. 

Many of the technical difficulties that arise when perturbation theory is applied 
to gauge fields on a torus are due to the existence of torons. I therefore first 
considered to calculate the energy spectrum for gauge fields confined to a sphere 
S 3, which is simply connected and does not allow for toron solutions. However,  
this possibility must be dismissed for another  reason: S 3 is a curved space so that 
relative to the infinite volume theory the wave functions are distorted locally. T h e  

approach of the finite volume masses to the infinite volume values is therefore slow 
(i.e. like 1 / L  instead of exp ( - m L ) )  and there would be little hope to extract 
accurate numbers for the mass ratios from perturbation theory (see ref. [1] for 
further discussion). 

Practically all results obtained in this paper carry over to gauge theories on a 
finite periodic lattice. In particular, central sectors, torons and the effective hamil- 
tonian H '  exist as before. To lowest order, H '  is still equal to H~, but the one-loop 
coefficients a,. now depend on L in a way, which is specific to the particular lattice 
action chosen. 

A p p e n d i x  A 

SU(n) NOTATIONS 

The Lie algebra au(n) of SU(n) consists of all complex n × n matrices X with 

X + = - X ,  T r X = 0 .  (A.1) 

Let  T a, a = 1 . . . . .  n 2 - 1 ,  be a basis of such matrices satisfying 

Tr  ( T a T  b) = -½8 ab . (A.2) 

The structure constants fabc and the totally symmetric tensor d *be are then defined 

by 

I T  ~, T b ] =f°bCTC, (A.3) 
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{T" ,  T b} = - 1 8 " b  + id~b~T ¢ . 
n 

Both tensors are real and 

(A.4) 

we have 

dadedbde = __1 (n 2 -7 4 )8  ~b. ( A . 6 )  

The totally symmetric tensor s ~b~d, which occurs in the effective hamiltonian (eq. 
(3e)), is given by 

s ~bcd = ~ n  (d~bed ~d~ + d ~ d  bde + d~ded bc~) 

"F 2(8 ab8 cd "F" 8 ac8 bd dr" 8 ads be ) .  (A.7) 

Its group theoretical meaning is explained below. For any X ~ oa(n)  define a linear 
mapping 

A d X :  ou(n ) --> o , ( n  ) , 
(A.8) 

A d  X ( Y )  = [X,  Y]  for all Y ~ o , ( n  ) . 

With respect to the basis T ~, Ad X is represented by a matrix (Ad X )  ~ so  that 

A d  X ( T b) = T~(Ad X )  ~b . (A.9) 

Explicitly, writing 

X = X ~ T  ~ , (A. 10) 

(Ad X )  ~b = f~cbXC, (A. 11) 

(Ad X(Y))~ = (Ad X )  ab y b .  (A. 12) 

The matrices (Ad X )  ~b form the adjoint representation of og(n). In particular, 

lAd X, Ad Y] = Ad IX, Y],  (A.13) 

Tr (Ad X Ad Y) = 2n Tr ( X Y ) .  (A.14) 

The meaning of the symbol s ~bcd is now made clear by the following 
L e m m a :  Let X1 . . . . .  X4 be four elements of o¢(n). Then 

1 - -  abcd-ffira ~rb ~.c .~1d 
~ T r ( A d X ~ ( 1 ) A d X ~ ( 2 ) A d X ~ ( 3 ) A d X ~ ( 4 ) ) = s  A I A 2 A 3 A  4 , (A.15) 

4~ 

where tr runs over all permutations of (1, 2, 3, 4). 
Proof: For any choice of real numbers Ai set 

4 
X-~-- E A i X  i . 

i=1 

f~defbd~ = n8 =b , (A.5) 
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The left- and right-hand sides of eq. (A.15) can then be written as 

1 O 4 
lhs = - -  T r  (Ad X)  4 , 

4! c~A1 c3A20A30A4 

1 0 4 
= - - .  $ a b c d x a x b x c x d  . 

rhs 4! tgA1 0A2 0A3 0A4 

It is therefore sufficient to show that 

Tr (Ad X )  4 = s~b~dx°xbx~x  d , 

for all X ~ o~(n). To this end, first note that 

Tr (exp Ad X)  = - 2  Tr ( T  ~ eXT ~ e - x )  

= (Tr eX)(Tr e -x )  - 1. 

Identifying the terms of order X 4 we have 

Tr (Ad X)  4 = 2n Tr X 4 + 6(Tr X2) 2 . 

Finally, using eq. (A.2) and 

X 2 1 x a x a  _ 1. Jab . . . . .  b,-~c = - -  -l- ~ ta  A A 1 , 
2n 

one obtains 

as required. []  

Tr (Ad X)  4 = ¼ndaOedcdexaxbxcx a + 2 ( s a g a )  2 

= s abcnX"XbXCX d ' 

Appendix B 

HEAT KERNEL ON S 1 

The heat kernel on S 1 is defined by (t > 0, z ~ C) 

1 ~ f /2,rv'x 2 .2zrv ) 
F , ( z ; L ) = - ~  ~ oexp l , t ( - -~ - -  ) +t--'~--z~ . 

It is the fundamental solution of the heat equation on $I: 

F,(z + L ;  L) = Ft(z ; L ) ,  

l i m F t ( z ; L ) =  ~ 8 ( z - v L ) ,  ( z e R ) ,  

255 

(B.1) 

(B.2) 

(B.3) 

(B.4) 
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Using the Poisson s u m m a t i o n  fo rmula  one  obta ins  

1 
Fr(z ;L) - - (4~r t ) - l /2  ~ooexp  { - ~ - ~ ( z - v L ) 2  } • 

For  real z, Ft(z  ; L )  is hence  real  and posit ive.  F u r t h e r m o r e  
2 

F t ( O ; L ) = ( 4 ~ ' t ) - l / 2 { l + O ( e x p [ - L ] ) } ,  

2 
F t ( O ; L ) - - - ;  1 , ( t . o o ) .  

(B.5) 

(t-~ 0 ) ,  (B.6) 

(B.7) 

Appendix C 

COMPUTATION OF fgo[¢] 

W e  first de t e rmine  the  e igenvalues  of / '2  [¢ ]. This  is easy,  because  the to ron  field 
Ak[~o] is i ndependen t  of x. T h e  e igenfunct ions  o f / 2 [ ¢ ]  are the re fo re  p lane  waves:  

q~(x)  = V'; e ik'~ , (C.1) 

2~r 
kj = -~-- vj, u j e Z ,  (C.2) 

T h e  e igenvalue  equa t ion  and the gauge condi t ion (23b) then  b e c o m e  algebraic:  

(kl - i A d  At[~p ])2vi = Ev j ,  (C.3) 

(kl - i A d  A~[¢])vr = 0 .  (C.4) 

T h e  condi t ions (23a) requires  tha t  the  th ree  matr ices  vl have  zeros on their  d iagonal  

if k = 0. The  matr ices  A d  At[q~] c o m m u t e  and can be  s imul taneous ly  diagonalised.  
This  solves eq. (C.3). T h e  constra int  (C.4) mere ly  reduces  the  multiplicit ies of the  
ene rgy  levels by  1". T h e  result  is: 

Eo(k)  = k 2, k ~ 0 ,  mult ipl ici ty 2(n - 1 ) ,  (C.5) 

1 ,, a \2  
E ~ a ( k ) =  k t+-~(¢ t  - ¢ z  ))  , a # f l ,  mul t ip l i c i t y2 .  (C.6) 

W e  now compu te  g0[t0] using Paul i -Vi l lars  regulators .  The  reason  for  not  using 
d imens ional  regular isat ion is the la tent  danger  inheren t  to this m e t h o d  tha t  ~o- 
d e p e n d e n t  terms,  which are m o r e  than  logar i thmical ly  divergent ,  are regular ized 
to zero.  Thus,  let Mj and ej (j  = 1 . . . . .  v) be  regula tor  masses  and a l te rnat ing  signs 
such that  

i ej = - 1 ,  i e//~/~ p = 0 ,  (p = 1, 2 . . . . .  V -- 1) .  (C.7) 
j= l  /=1 

* Strictly speaking this is only true if E > O. However, zero modes occur only for torons Ak[¢] at the 
boundary of the toron manifold and even in that case it is not necessary to count them correctly, 
because they do not contribute to gPo[¢]- 
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Then the regularized frequency sum is 

$o[¢]= Y Z{fffaa(k)+ ~ eiJEaa(k)+M~}. (C.8) 
a # ~  k 1=1 

Here and below all terms not depending on ¢~' are dropped. Noting 

we have 

dt t -3/2 ei e ,) e -ns , (C.9) 
/ = 1  '=  

{ ,  . }) ~ e  - 'E-#k)= f i  ( ~ exp ---~(21rv,+~ot-~0~) 2 , 
/ = 1  vl ~--co 

(c.lo) 

$o[¢]= ~BF(_½)I?dtt-3/2(l+ ~ le~e-~  ) 

{ '  o }) x 1"[ exp -~--~(2~'vl +~ l  -~o~) 2 . (CAD 
/ = 1  vl co 

Next, the sums are converted using Poisson's summation formula (cp. appendix B): 

v! ~ -co  

L ~ exp{--~(vlL) +iVl(¢t--gOal)} (C.12) 

When inserted into eq. (C.11) one then sees that only the term with vl = v2 = v3 = 0 
is ultra-violet divergent. But this term is also independent of ¢~ so that the 
interesting e-dependent  part of g'o[C¢ ] is convergent for Mj -> oo. Furthermore, the 
t-integral becomes elementary in this limit and the final result is 

1 
$ ' o [ ¢ ] = - - - - ~  X Z (v2) - 2 c o s y "  ( C a _ C a ) ,  (C.13) 

7/" /--, a # B v # O  

(the minus sign stems f rom/"(-½)  = - 4x/~; v denotes the integer vector (vl, v2, v3) 
and q~ = (~p ~', ~ ,2, ¢3)). 

Appendix D 

S P E C T R U M  O F  H ~  

The proof of the theorem in sect. 5 is based on a criterion valid for general 
Schr6dinger operators 

A = --A + V, (D.1) 
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where V >~ 0 is a continuous function on R".  Under these conditions, A is essentially 
self-adjoint on C~(R "~), the space of all infinitely differentiable wave functions S (x) 
with compact support (ref. [8], theorem 10.28). This means that A extends from 
C~(R m) to a unique self-adjoint operator, which will also be denoted by A. 

Criterion: Suppose there is a continuous function A (x)(x ~ R r~) such that A/>0 
and 

(S, AS)  ~> I d"x a (x) lS(x) l  z , for all S ~ C~ ( R" ) .  (D.2) 

Suppose furthermore that A (x) -~ oo as x ~ ~ .  Then, A has purely discrete spectrum. 
This criterion follows easily from a formula for the bottom of the essential 

spectrum of A quoted by Agmon [9]. Alternatively, one may adapt the proof of 
theorem 13.16 of ref. [8], which treats the case where the potential V itself goes 
to infinity in all directions (i.e. in this case one may choose A = V). 

It remains to find a function A for H~. To this end, note that the potential V 
(eq. 50) can be written as 

d 
V ( C )  = a t n a b  b ,,,,,abc b cx2 c 1 ~  c1+½ ~. (D.3) ~ f  CkC]) , 

k j=2  

d 
M ~b= E (f"*ec~)(fbd~C~), 

k=2 

It follows that for any 0 ~ C~ 

02 c~M"bc~) S(c) 

(D.4) 

one thus obtains 

Now, M is symmetric with eigenvalues to 2 t> 0 (a = 1 . . . . .  n 2-1) .  Furthermore, M 
is independent of cl so that at fixed Ck, k >/2, the operator on the right-hand side 
of eq. (D.5) is just a harmonic oscillator hamiltonian with frequencies toa. Performing 
the cl integrations first, it follows that* 

Noting 

Xtoa~  > to,} = ( T r M )  l /z= n ~ CkCk} , (D.7) 
a k=2 

/ a \ 1 / 2  

(S,H'oS)>~½v~n [ dc[k~,2c~,c~, ) IS(c)[ 2 . (D.8) 

* This is the crucial step in the proof. It realizes the intuitive insight that  wave functions in narrow 
potential valleys have high energy, because the kinetic term forces them to spread into regions 
where the potential is not  small. 

(D.6) 

(D.5) 
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Finally, the estimations are repeated with cl replaced by c2 etc. and the resulting 
inequalities (D.8) are then averaged. This yields the symmetric bound 

(4,,H~J/)>~l ~ f dc(c~c~)1/214/(c)12. (D.9) 

Hence 

x (c) = 1 J n ( d -  1)(c ~c ~)1/2, (D. 10) 

has all the properties necessary for the criterion to apply. 

A p p e n d i x  E 

COMPUTATION OF T3 

The ground state energy of the harmonic oscillator (62d) is given by 

T3 = ½ Tr' {[(PAP)a/uB(PAP)I/2]I/2}. (E.1) 

Here, P denotes the proiector 

Pkl = ~kl --Ok A- l  Ol , (E.2) 

and Tr' {. • .} means the trace over the space of periodic functions f~(x) with 

L 

Io ddx f~ (x )  = O. (E.3) 

In a condensed notation, we have from eqs. (63) 

1 
(PAP) 1/2 = P + ½(goL')'/3 ~ p . A d c  ~-~-A ~ A d c .  P 

-~(goL~) 8/3 P.Adc-~--~A-~--~Adc. + . . . ,  (E.4) 

= P ( - A ) P -  (goLe) 2/3 2 p  Ad c " OP PBP 

- (goL ~)4/3 ~22 (P A d  c • Ad cP - P "  A d  c A d  c • P + 2 P '  lAd c, Ad c ]" P ) .  

Furthermore, using 

1AOD ~OD ---- A-1 -- (g°Le)2/3 2 A  -1 Ad c .  0A -1 

+ (goL~)4/3 3 A - 1 A d c  • aA-1Adc • aA-l+ . . '  , (E.6) 
L 
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one first obtains (PAP)I /2B(PAP)  1/2 and then the square root of this operator  as 
a power series of g2o/3. A typical term in the latter expansion is 

X = ( - A ) - 3 / 2 P  A d  c ' 0 A d  c • 0P.  (E.7) 

The trace of such operators is easily worked out in momentum space: 

T r ' X  = - ( d -  1) Y. {kl-3klkj Tr (Ad c~ Ad cj) 
k~0 

d - 1  
E Ikl - '  Tr (Adct  A d c , ) .  (E.8) 

d k#0 

Here,  the trace on the right-hand side refers to color only. Up to an additive 
constant, the outcome then is 

1"3 = -(goL~) 4/3 12 ( d -  1) 2 ~ Ikl_~ Tr (Ad c~ Ad ct) 
4d k~0 

_ ( g o L , ) S / 3 1 ~ 1  ~ [kl_ 3 Tr ([Ad ct, Ad cj3[Ad c,, Ad cj]) 
L [4d  k~O 

* ( d -  1 ) ( d - 6 )  ~ ikl_ 3 Tr (Ad ct Ad ct Ad cj Ad cj) 
16d k~o 

+ 5 ( d - l )  ~ [kl_Tktkjkikm T r ( A d c t A d c j A d c i A d c m ) } .  (E.9) 
16 k~0 

Finally, using some identities from appendix A, one finds 

Tr (Ad ct Ad cl) = -nc':c '~, (E.10) 

Tr (Ad ct Ad cl Ad ci Ad cj) 

a b c d  a b c d 1 = s c~clc j cj - g  t r  (lAd ct, Ad cj][Ad ct, Ad cj]), 

Tr  ([Ad ct, Ad cj][Ad cl, Ad ci]) = , ~abc b c,2 - -nl ,  f C t C j )  , 

T r ( k  A d c )  4 . . . . .  bed ~ b c d 
• =KII~jKiKm S C l C j C i C m  • 

(E.11) 

(E.12) 

(E.13) 

When these relations are inserted into eq. (E.9), one obtains the result quoted in 
sect. 7. 

Appendix  F 

E V A L U A T I O N  OF a l  AT d = 3  

Define 

v ~ - - o o  

(FA)  
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The coefficient al is then given by (cf. eq. (75)) 

( d -  1) 2 
o t l = n ~ j  ° dtt-a/2(ha-1), R e d < l .  

Using the duality relation (B.5), 

we have 

261 

(F.2) 

(F.3) 

Io ld t t -  (h - 1 ) = - 2 + j 1  ~°dt 
f 1 /2 d t~a-3)/2 h d 

2 d  ~oo dt  t(d-3)/2(h d 
= - d _ l + J l  - 1 ) .  

I t  fo l lows tha t  

( d -  1)2f 2 d  ~ t(a-3)/Z)(h a 1)} .  ax  = n ~ - ~ - L - - ~ +  f l  a t ( t - I / 2 +  (F.4) 

This representation is valid for all d. In particular, 

Finally, substituting the series (F.1) for h and performing the integral numerically, 
one gets 

~lla=3 = - ~ -  1.89153165 . . . .  (F.6) 
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